Embryonic stem cell-derived endothelial cells may lack complete functional maturation in vitro.
نویسندگان
چکیده
Stem cell therapies will only become clinically relevant if the stem cells differentiated in vitro function as their in vivo counterparts. Here, we employed our previously developed techniques for deriving endothelial cells (>96% purity) from mouse embryonic stem cells (ESC) and compared these with mouse aortic endothelial cells (MAEC) obtained from thoracic aortas. Immunocytochemical analysis of ESC-derived endothelial cells (EC) demonstrates that both cell types are positive for the EC markers endothelial nitric oxide synthase (eNOS), Flk-1, Flt-1, vascular endothelial cadherin (VEcad), platelet-endothelial cell adhesion molecule-1 (PECAM-1), and CD34. However, ESC-derived EC express slightly lower levels of PECAM-1 and VE-cadherin, and significantly lower levels of acetylated low-density lipoprotein (LDL) uptake and von Willebrand factor. Although ESC-derived EC do express VE-cadherin, the VE-cadherin in the ESC-derived EC did not localize as well at the cell-cell junctions as in the MAEC. Interestingly, ESC-derived EC express much greater levels of the endothelial and hematopoietic stem cell marker CD34 and vasculogenic and angiogenic sprouting than MAEC. These results indicate that ESC-derived EC share some key characteristics of 'mature' EC, while retaining markers of alternate phenotypes including immature endothelium.
منابع مشابه
P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملThe Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells
Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vascular research
دوره 43 5 شماره
صفحات -
تاریخ انتشار 2006